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Abstract. The main aim of this paper is a discussion on the convolution-type identity
for the inverses of central binomial coefficients. Moreover, many new identities of
algebraic and trigonometric nature for these rational numbers are obtained, which
complete the ones derived by the authors in their previous papers [10, 12] and by
Mattarei and Tauraso in [3]. Two new triangles of the rational numbers are also
discovered.
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1. Introduction

This paper is a follow-up of the research initiated by the authors in [10], inspired,
first and foremost, by Lehmer’s publication [2], where many attractive results have
implied new questions. By posing new problems, associated, in the majority of cases,
with the forms of convolution-type sums of the inverses of central binomial coefficients,
the authors have drafted this paper. Additional incentives for the paper were our
previous publications, namely [12] and [13].

Our paper is divided into four sections. In the second one, using some Lehmer’s
formulae from [2], we generate our two fundamental identities for the self convolution
of sequence of the inverses of central binomial coefficients. In the next section the
new inspiring trigonometric identities connected with the inverses of central binomial
coefficients are shown. On that base two triangles of the rational numbers are created
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and next the new algebraic identities for the inverses of central binomial coefficients
are derived. At the end of the paper, by using the almost forgotten (and discovered
again independently by us) Parker’s identity and some Ziad S. Ali identity, the final
form of formula for the self convolution of sequence of the inverses of central binomial
coefficients is presented – see formula (45) in frame.

2. Convolution-type identities

At first, our aim is to generate the following convolution-type identities for the
inverses of central binomial coefficients

an :=

(

2n

n

)

,

for every n = 0, 1, 2, . . .

Theorem 2.1. The following identities hold

4n
n−1
∑

k=1

1

ak an−k
= n− 1 +

n−1
∑

k=1

(n+ 3 k + 1) (n− k)
4k−1

k2 ak
(1)

and

4n
n−1
∑

k=1

1

ak an−k
= n− 1

4
− (n+ 1) 4n−1

n an
+ (2n− 1)

n−1
∑

k=1

4k−1

k ak

− 1

2 an

n
∑

k=1

(

2n

n+ k

)

(

4 k2 − 1 + n (n+ 1)
(−1)k − 1

k2

)

,

(2)

for every n = 2, 3, . . .

Proof. From the following Lehmer’s formula (see [2, formula (15)]):

∞
∑

n=1

(2 x)2n

an
=

x2

1− x2
+

x arcsin(x)

(1− x2)3/2
, (3)

we easily obtain the formula

(

∞
∑

n=1

(2 x)2n

an

)2

= x4 (1 − x2)−2 + 2 x3 (1− x2)−5/2 arcsin(x)

+ x2 (1− x2)−3
(

arcsin(x)
)2
.

(4)

But, by the binomial series, we have

(1 − x2)−2 =

∞
∑

n=0

(−2

n

)

(−x2)n =

∞
∑

n=0

(n+ 1)x2n. (5)
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Hence, by the binomial series and by formula (9) from [2], we deduce

2 x3 (1− x2)−5/2 arcsin(x) = x2 (1− x2)−2 2 x√
1− x2

arcsin(x)

= x2

(

∞
∑

n=0

(n+ 1)x2n

) (

∞
∑

n=1

(2 x)2n

n an

)

= x2
∞
∑

n=1

(

n
∑

k=1

(n− k + 1)
22k

k ak

)

x2n;

(6)

and, at last, by the binomial series and by formula (13) from [2], we get

x2

(1− x2)3
(

arcsin(x)
)2

=
x2

2

(

∞
∑

n=0

(

n+ 2

2

)

x2n

) (

∞
∑

n=1

(2 x)2n

n2 an

)

=
x2

2

∞
∑

n=1

(

n
∑

k=1

(

n− k + 2

2

)

22k

k2 ak

)

x2n.

(7)

On the other hand, by applying the Cauchy product, we get

(

∞
∑

n=1

(2 x)2n

an

)2

=
∞
∑

n=2

(

4n
n−1
∑

k=1

1

ak an−k

)

x2n,

which, by formulae (4)–(7) and (3.6) from paper [12], yields the following formula

4n
n−1
∑

k=1

1

ak an−k
= n− 1 +

n−1
∑

k=1

(n+ 3 k + 1) (n− k)
4k−1

k2 ak

= n− 1

4
+ n (n+ 1)

n−1
∑

k=1

4k−1

k2 ak

+ (2n− 1)

n−1
∑

k=1

4k−1

k ak
− 1

2 an

n
∑

k=1

(

2n

n+ k

)

(4 k2 − 1),

(8)

which, by formula (5.1) from [12] for ϕ = 0, implies (2). ⊓⊔

Let us state that identity (2) is not in final form in view of the necessity of deriving
a reduction formula for the following sum

n
∑

k=1

4k

k ak
. (9)

The next results will be focused on this problem. The corresponding trigonometric
type reduction formula obeying sum (9) is given by identity (32). It is derived as
a special case of the more general identities of trigonometric nature for the inverses of
central binomial numbers (formulae (10), (16) and (29)). All of them follow from the
formulae obtained by the authors in [12]. Simultaneously, they constitute the non-
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trivial complement of identities derived in [12]. At last the identity (34) is a compact
algebraic form of the sum (9).

3. Auxiliary functions Ak(ϕ)

Now we discuss some trigonometric type identities connected with the inverses of
central binomial coefficients. By differentiating formula (1.1) from [12] divided by
sinϕ, we obtain as follows.

Theorem 3.1. For every n ∈ N, n ≥ 2 the following identity holds

an

(

1
2 tan(ϕ) +

n−1
∑

k=1

a−1
k sin(ϕ)

(

2 cos(ϕ)
)2k−1

)

=

n
∑

k=1

(

2n

n+ k

)

Ak(ϕ), (10)

where

Ak(ϕ) :=
cos(ϕ) sin(2 k ϕ)− 2 k cos(2 k ϕ) sin(ϕ)

2 k cos(ϕ) sin2(ϕ)
, k ∈ N,

whence the functions Ak(ϕ) do not depend on n.
Moreover, the following recurrence formula holds

Ak+1(ϕ) =
k

k + 1
cos(2ϕ)Ak(ϕ) +

1

k + 1
tan(ϕ) cos(2 k ϕ) + 2 sin(2 k ϕ), (11)

for every k ∈ N.

Proof. We have

Ak+1(ϕ) =
(

(k + 1) sin(ϕ) sin(2ϕ)
)−1 (

cos(ϕ) sin(2 k ϕ+ 2ϕ)

− (2 k + 2) cos(2 k ϕ+ 2ϕ) sin(ϕ)
)

=
(

(k + 1) sin(ϕ) sin(2ϕ)
)−1 (

cos(ϕ) sin(2 k ϕ) cos(2ϕ)

+ cos(ϕ) cos(2 k ϕ) sin(2ϕ)− (2 k + 2) cos(2 k ϕ) cos(2ϕ) sin(ϕ)

+ (2 k + 2) sin(2 k ϕ) sin(2ϕ) sin(ϕ)
)

=
(

(k + 1) sin(ϕ) sin(2ϕ)
)−1 (

cos(2ϕ)
(

cos(ϕ) sin(2 k ϕ)

− 2 k cos(2 k ϕ) sin(ϕ)
)

+ cos(ϕ) cos(2 k ϕ) sin(2ϕ)

− 2 cos(2 k ϕ) cos(2ϕ) sin(ϕ)
)

+ 2 sin(2 k ϕ)

=
k

k + 1
cos(2ϕ)Ak(ϕ) +

(

(k + 1) sin(ϕ) sin(2ϕ)
)−1

cos(2 k ϕ)×

×
(

cos(ϕ) sin(2ϕ)− 2 cos(2ϕ) sin(ϕ)
)

+ 2 sin(2 k ϕ)

=
k

k + 1
cos(2ϕ)Ak(ϕ) +

1

k + 1
cos(2 k ϕ)A1(ϕ) + 2 sin(2 k ϕ)

=
k

k + 1
cos(2ϕ)Ak(ϕ) +

1

k + 1
tan(ϕ) cos(2 k ϕ) + 2 sin(2 k ϕ),
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which implies (11). ⊓⊔

We note that

A1(ϕ) =
cos2(ϕ)− cos(2ϕ)

cos(ϕ) sin(ϕ)
= tan(ϕ), (12)

A2(ϕ) =
cos2(ϕ) cos(2ϕ)− cos(4ϕ)

cos(ϕ) sin(ϕ)

=

(

cos2(ϕ) cos(2ϕ)− cos2(2ϕ)
)

+ sin2(2ϕ)

cos(ϕ) sin(ϕ)

=
cos(2ϕ)

(

cos2(ϕ) − cos(2ϕ)
)

cos(ϕ) sin(ϕ)
+ 2 sin(2ϕ)

= cos(2ϕ) tan(ϕ) + 2 sin(2ϕ) =
(

2 cos2(ϕ)− 1
)

tan(ϕ) + 2 sin(2ϕ)

= 3 sin(2ϕ)− tan(ϕ), (13)

and from (11) we obtain

A3(ϕ) =
2

3
cos(2ϕ)

(

3 sin(2ϕ)− tan(ϕ)
)

+
1

3
tan(ϕ) cos(4ϕ) + 2 sin(4ϕ)

= 3 sin(4ϕ) +
1

3
tan(ϕ)

(

cos(4ϕ)− 2 cos(2ϕ)
)

=
10

3
sin(4ϕ)− 4

3
sin(2ϕ) + tan(ϕ), (14)

since

cos(4ϕ)− 2 cos(2ϕ) = T4(cos(ϕ)) − 2T2(cos(ϕ))

= 8 cos4(ϕ)− 12 cos2(ϕ) + 3 = cos(ϕ)U3(cos(ϕ)) − 8 cos2(ϕ) + 3

= cot(ϕ) sin(4ϕ)− 8 cos2(ϕ) + 3,

where T2(x), T4(x) and U3(x) denote the respective Chebyshev polynomials of the
first and second kind. Some of the above relations can be derived from the following
auxiliary Lemma.

Lemma 3.2. The following identity holds

tan(ϕ)T2n

(

cos(ϕ)
)

= sin(2nϕ)− 2 sin(2 (n− 1)ϕ) + . . .

. . .+ 2 (−1)n−1 sin(2ϕ) + (−1)n tan(ϕ),
(15)

where Tn(x) denotes the n-th Chebyshev polynomial of the first kind [4, 7].

Proof. By means of the basic identities for Un(x) (see [4, 7]), where Un(x) denotes
the n-th Chebyshev polynomial of the second kind, we obtain
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tan(ϕ)T2n

(

cos(ϕ)
)

= tan(ϕ)
(

cos(ϕ)U2n−1

(

cos(ϕ)
)

− U2n−2

(

cos(ϕ)
)

)

= sin(2nϕ)− tan(ϕ)U2n−2

(

cos(ϕ)
)

= sin(2nϕ)− tan(ϕ)
(

2 cos(ϕ)U2n−3

(

cos(ϕ)
)

− U2n−4

(

cos(ϕ)
)

)

= sin(2nϕ)− 2 sin(2 (n− 1)ϕ) + 2 sin(2 (n− 2)ϕ) + . . .

. . .+ 2 (−1)n−1 sin(2ϕ) + (−1)n tan(ϕ).

⊓⊔

Now we present the generalization of formulae (12), (13) and (14).

Theorem 3.3. The following formula holds

Ak(ϕ) :=
1

k

(

k−1
∑

l=1

(−1)k−1−l al,k sin(2 l ϕ)

)

+ (−1)k−1 tan(ϕ), (16)

where

ak,k+1 = 1
2 ak−1,k + 2 k + 3, (17)

ak−1,k+1 = 1
2 ak−2,k + 2, (18)

ak−2,k+1 = 1
2 (ak−1,k + ak−3,k) + 2, (19)

...

ai,k+1 = 1
2 (ai+1,k + ai−1,k) + 2, i = 2, 3, . . . , k − 2, (20)

...

a1,k+1 = 1
2 a2,k + k + 2, (21)

and

a1,2 = 6, a1,4 = 10, a1,5 = 8, a1,6 = 14,

a1,3 = 4, a2,4 = 4, a2,5 = 14, a2,6 = 8,

a2,3 = 10, a3,4 = 14, a3,5 = 4, a3,6 = 18, (22)

a4,5 = 18, a4,6 = 4,

a5,6 = 22.

Proof. We proceed by induction on k. It results from (12)–(14) the identity (16)
holds for k = 1, 2, 3. Now suppose that (16) holds for some k ∈ N. Then by recurrence
formula (11) and Lemma 3.2, we get
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Ak+1(ϕ) =
k

k + 1
cos(2ϕ)Ak(ϕ) +

1

k + 1
tan(ϕ) cos(2kϕ) + 2 sin(2kϕ)

=
1

k + 1

(1

2

k−1
∑

l=1

(−1)k−1−lal,k
(

sin
(

2 (l+ 1)ϕ
)

+ sin
(

2 (l− 1)ϕ
))

)

+
k

k + 1
(−1)k−1

(

sin(2ϕ)− tan(ϕ)
)

+
1

k + 1
sin(2 k ϕ)− 2

k + 1
sin(2 (k − 1)ϕ)

. . .+
2

k + 1
(−1)k−1 sin(2ϕ) + (−1)k

1

k + 1
tan(ϕ) + 2 sin(2 k ϕ)

=
1

k + 1

(

(

1
2 ak−1,k + 2 k + 3

)

sin(2 k ϕ)−
(

1
2 ak−2,k + 2

)

sin(2 (k − 1)ϕ)

+
(

1
2 (ak−1,k + ak−3,k) + 2

)

sin(2 (k − 2)ϕ)

−
(

1
2 (ak−2,k + ak−4,k) + 2

)

sin(2 (k − 3)ϕ)

. . .+ (−1)k−2
(

1
2 (a3,k + a1,k) + 2

)

sin(4ϕ)

+ (−1)k−1
(

1
2 a2,k + k + 2

)

sin(2ϕ)
)

+ (−1)k tan(ϕ),

which implies (17)–(21). ⊓⊔

4. Triangles of numbers ak,n and bk,n

In this section we present the explicit form of elements al,k, for every l, k ∈ N, such
that l < k and k ≥ 2.

Theorem 4.1. We have

ak−2l,k = 4l, k = 2l+ 1, 2l+ 2, ..., (23)

ak−2l+1,k = 4(k − l) + 2, k = 2l, 2l+ 1, 2l+ 2, ..., (24)

for every l ∈ N.
Hence, we deduce the following equivalent description of elements al,k:

ak−1,k = 4k − 2, k = 2, 3, 4, ..., (25)

ak−2,k = 4, k = 3, 4, 5, ..., (26)

ak−3,k = 4k − 6, k = 4, 5, 6, ...,

ak−4,k = 8, k = 5, 6, 7, ...,

. . .

a1,2l+1 = a2,2l+2 = 4l, l = 1, 2, . . . , (27)

a1,2l = 4l+ 2, a2,2l+1 = 4l + 6, l = 1, 2, . . . (28)

Proof. We will prove inductively that for each k ∈ N, k ≥ 2 and for all
τ = 1, 2, ..., k − 1 formulae (23) and (24) hold for elements aτ,k. From (22) it fol-
lows that only the induction step is needed.
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For this purpose let us set k ∈ N, k ≥ 2 and let us assume that formulae (23) and
(24) describing elements aτ,k, τ = 1, 2, ..., k − 1, are true. Thus, by using formulae
(17)–(21) we receive, successively:

ak,k+1
(25)
=

1

2
(4k − 2) + 2k + 3 = 4(k + 1)− 2,

ak−1,k+1
(26)
=

1

2
4 + 2 = 4,

if l ∈ N and 2 ≤ k − 2l + 1 ≤ k − 2 then

ak−2l+1,k+1 =
1

2
(ak−2l+2,k + ak−2l,k) + 2 =

1

2
(4(l − 1) + 4l) + 2 = 4l,

if l ∈ N and 2 ≤ k − 2l then

ak−2l,k+1 =
1

2
(ak−2l+1,k + ak−2l−1,k) + 2

=
1

2
(4(k − l) + 2 + 4(k − l − 1) + 2) + 2 = 4(k − l) + 2,

and, at last, if k = 2l+ 1 then

a1,2l+2 =
1

2
a2,2l+1 + 2l+ 3

(28)
= 2l+ 3 + 2l + 3 = 4l+ 6,

whereas, if k = 2l then

a1,2l+1 =
1

2
a2,2l + 2l + 2

(28)
=

1

2
4(l − 1) + 2l+ 2 = 4l,

which finishes the proof. ⊓⊔

Corollary 4.2. From (23) and (24) (similarly from (25)–(28)) we can generate the
following triangle T1 of values of ak,l, k, l ∈ N, k < l:

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 4 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 14 4 18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 8 18 4 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 18 8 22 4 26 0 0 0 0 0 0 0 0 0 0 0 0 0
18 12 22 8 26 4 30 0 0 0 0 0 0 0 0 0 0 0 0
16 22 12 26 8 30 4 34 0 0 0 0 0 0 0 0 0 0 0
22 16 26 12 30 8 34 4 38 0 0 0 0 0 0 0 0 0 0
20 26 16 30 12 34 8 38 4 42 0 0 0 0 0 0 0 0 0
26 20 30 16 34 12 38 8 42 4 46 0 0 0 0 0 0 0 0
24 30 20 34 16 38 12 42 8 46 4 50 0 0 0 0 0 0 0
30 24 34 20 38 16 42 12 46 8 50 4 54 0 0 0 0 0 0
28 34 24 38 20 42 16 46 12 50 8 54 4 58 0 0 0 0 0
34 28 38 24 42 20 46 16 50 12 54 8 58 4 62 0 0 0 0
32 38 28 42 24 46 20 50 16 54 12 58 8 62 4 66 0 0 0
38 32 42 28 46 24 50 20 54 16 58 12 62 8 66 4 70 0 0
36 42 32 46 28 50 24 54 20 58 16 62 12 66 8 70 4 74 0
42 36 46 32 50 28 54 24 58 20 62 16 66 12 70 8 74 4 78
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Finally, we focus on one more trigonometric identity that describes the following
sum

an

n−1
∑

k=1

(

k ak

)−1
(

2 cos(ϕ)
)2k

(see formulae (31) and (32) below). From formulae (10) and (16) we obtain immedi-
ately the identity

an

n−1
∑

k=1

a−1
k sin(ϕ)

(

2 cos(ϕ)
)2k−1

=

n
∑

k=2

1

k

(

2n

n+ k

)

(

k−1
∑

l=1

(−1)k−1−l al,k sin(2 l ϕ)

)

=

n−1
∑

k=1

bk,n sin(2 k ϕ),

(29)

where

bk,n :=
n
∑

l=k+1

(−1)l−k−1

l

(

2n

n+ l

)

ak,l, (30)

for every k = 1, 2, . . . , n − 1. Using the triangle T1 for numbers ak,l we can generate
(with the aid of Mathematica software) the next triangle T2 of values of bk,n, k, n ∈ N,
k < n:

0 3 50

3

455

6

1617

5

6699

5

191334

35

619047

28

11204479

126

224524729

630

0 0 10

3

77

3

714

5

3498

5

112398

35

198627

14

3853135

63

81674749

315

0 0 0 7

2

171

5

1122

5

43472

35

175461

28

1254175

42

28767349

210

0 0 0 0 18

5

638

15

33748

105

13897

7

689078

63

17650658

315

0 0 0 0 0 11

3

1066

21

12155

28

373235

126

2232253

126

0 0 0 0 0 0 26

7

825

14

11815

21

441541

105

0 0 0 0 0 0 0 15

4

1207

18

63631

90

0 0 0 0 0 0 0 0 34

9

3382

45

0 0 0 0 0 0 0 0 0 19

5

0 0 0 0 0 0 0 0 0 0

From (29) and (30), integrating over ϕ from π
2 to ϕ, we get

an

n−1
∑

k=1

(

k ak
)−1 (

2 cos(ϕ)
)2k

=

n
∑

k=2

1

k

(

2n

n+ k

)

(

k−1
∑

l=1

(−1)k−1−l

2 l
al,k cos(2 l ϕ)

)

−
n
∑

k=2

(−1)k−1

k

(

2n

n+ k

)

(

k−1
∑

l=1

1

2 l
al,k

)

,

(31)



228 E. Hetmaniok, B. Pia̧tek, M. Pleszczyński and R. Witu la

i.e.

an

n−1
∑

k=1

(

k ak
)−1 (

2 cos(ϕ)
)2k

=
1

2

n−1
∑

k=1

1

k
bk,n cos(2 k ϕ)− 1

2

n−1
∑

k=1

(−1)k

k
bk,n. (32)

Then, from (32), four special formulae can be derived:

1) for ϕ = 0:

an

n−1
∑

k=1

4k
(

k ak
)−1

=

⌊n/2⌋
∑

k=1

1

2 k − 1
b2k−1,n

=

⌊n/2⌋
∑

k=1

1

2 k − 1

n
∑

l=2k

(−1)l

l

(

2n

n+ l

)

a2k−1,l;

(33)

let us notice that by identity (39) below we have

an

n−1
∑

k=1

4k
(

k ak
)−1

=

(

2− 1

n

)

4n − 2an (34)

so we get

(

2− 1

n

)

4n − 2an =

⌊n/2⌋
∑

k=1

1

2k − 1
b2k−1,n

=

⌊n/2⌋
∑

k=1

1

2 k − 1

n
∑

l=2k

(−1)l

l

(

2n

n+ l

)

a2k−1,l.

(35)

2) for ϕ = π
4 :

A0(n) := an

n−1
∑

k=1

2k(k ak)
−1 =

1

2

n−1
∑

k=1

cos
(

π
2 k
)

− (−1)k

k
bk,n. (36)

This formula involves the periodic sequence

{

cos
(π

2
k
)

− (−1)k
}∞

k=1
= {(1,−2, 1, 0)}∞k=1 ,

and the first values of A0 are equal to 0, 32 ,
20
3 , 773 , 96, 536815 , 140608

105 , 35272
7 ,

400384
21 , 22838912

315 , 45693952
165 , 525568768

495 , 404316160
99 , 15768938496

1001 , 182923083776
3003 ,

3544166523904
15015 , 416962576384

455 , 2362792902656
663 , 524540560277504

37791 ;
let us note that A0(5) = 96 is the only integer value in this sequence;

3) for ϕ = π
3 :

A1(n) := an

n−1
∑

k=1

(k ak)
−1 =

1

2

n−1
∑

k=1

cos
(

2
3πk

)

− (−1)k

k
bk,n, (37)
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where we have the periodic sequence

{

cos

(

2π

3
k

)

− (−1)k
}∞

k=1

=

{(

1

2
,−3

2
, 2,−3

2
,
1

2
, 0

)}∞

k=1

,

and the first values of A1 are equal to 0, 34 ,
35
12 ,

21
2 , 152140 , 16753

120 , 5187
10 , 217869

112 ,
7407665
1008 , 15638463

560 , 46915431
440 , 1079055143

2640 , 69170205
44 , 6069685563

1001 , 201166722109
8580 ,

519680699151
5720 , 12472336781769

35360 , 87306357476023
63648 , 188908492786293536 , 215355681776901

10336 ;
among these values we may see two ”nice” equalities: 10A1(7) = 5187, 44A1(13) =
69170205;

4) for ϕ = π
6 :

A2(n) := an

n−1
∑

k=1

3k(k ak)
−1 =

1

2

n−1
∑

k=1

cos
(

k π
3

)

− (−1)k

k
bk,n, (38)

where we have the periodic sequence

{

cos
(π

3
k
)

− (−1)k
}∞

k=1
=

{(

3

2
,−3

2
, 0,−3

2
,
3

2
, 0

)}∞

k=1

,

and the first values of A2 are equal to 0, 94 ,
45
4 , 1894 , 753340 , 29403

40 , 28431
10 , 1226907

112 ,
4721733

112 , 90876411
560 , 275109291

440 , 2122752501
880 , 410095305

44 , 72208482993
2002 , 2798672999877

20020 ,
43453641653613

80080 , 522090046359171
247520 , 58062235172499

7072 , 113142667028049
3536 , 6452214338009277

51680 ;
here we have two attractive equalities: 10A2(7) = 28431, 44A2(13) = 410095305.

Final remarks

1◦ Identities (29)–(33) (as well as the description of coefficients ak,l from Theorem 4.1)
constitute a part of the main results of this paper. Let us emphasize that we obtained
them by applying the trigonometric methods, among the others by using the Cheby-
shev polynomials belonging to the most interesting and definitely creative computa-
tional methods of the modern number theory and combinatorics.
2◦ In papers [5] and [11] the following explicit formula (the Parker’s formula) was
derived

1 +

n
∑

k=1

4k

2kak
=

4n

an
(39)

(without connecting it with the more general functional formulae as it is done in our
paper). Hence, on the basis of formula (2) the following convolution-type identity
results which can be considered, in some sense, as the clou of one of the main issues
in our investigations

4n
n−1
∑

k=1

1

ak an−k
=

1

4
+ (4n− 5)

4n−1

an

− 1

2 an

n
∑

k=1

(

2n

n+ k

)

(

4 k2 − 1 + n (n+ 1)
(−1)k − 1

k2

)

,

(40)

where the relation an−1 = n
2(2n−1)an, n ∈ N is used for reducing the expressions.
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Moreover, using the Mathematica software we got the formula

1

nan

n
∑

k=1

(

2n

n+ k

)

(4k2 − 1) = 1 +
2n− 1

n+ 1
2F1(1, 1− n, 2 + n,−1), (41)

where the hypergeometric function 2F1 is used. The above sum can be also determined
by applying the following trigonometric identities (see [14]):

n
∑

k=1

(

2n

n+ k

)

(

cos kϕ+ (−1)k+1
)

= 2n−1(1 + cosϕ)n

= 22n−1 cos2n
ϕ

2
,

(42)

1

2
an +

n
∑

k=1

(−1)k
(

2n

n+ k

)

cos kϕ = 2n−1(1− cosϕ)n

= 22n−1 sin2n
ϕ

2
,

(43)

which implies
n
∑

k=1

(

2n

n+ k

)

(43)
=

for ϕ=π
22n−1 − 1

2
an,

n
∑

k=1

(

2n

n+ k

)

k2
(42)
= −22n−1 d2

dϕ2
cos2n

ϕ

2

∣

∣

∣

ϕ=0
= −2n−1 d2

dϕ2
(1 + cosϕ)n

∣

∣

∣

ϕ=0
,

and at last the expected equivalent form of formula (41), that is

1

2an

n
∑

k=1

(

2n

n+ k

)

(4k2 − 1)

=
1

2an

(

−22n+1 d2

dϕ2
cos2n

ϕ

2

∣

∣

∣

ϕ=0
+

1

2
an − 22n−1

)

=
1

4
− 4n−1

an
− 4n

an

d2

dϕ2
cos2n

ϕ

2

∣

∣

∣

ϕ=0
=

1

4
+

4n−1(2n− 1)

an
,

(44)

since
d2

dϕ2
cos2n

ϕ

2
= −n

2
.

Summing up, formula (40) takes the following compact form, final for our discussions

an

n−1
∑

k=1

1

akan−k
=

n

2
− 1− n(n+ 1)

22n+1

n
∑

k=1

(

2n

n+ k

)

(−1)k − 1

k2
. (45)
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3◦ Let us notice that by the Stirling formula (see [6, Chapter 3]) from (39) we deduce
the following limit

lim
n→∞

1√
n

n
∑

k=1

4k

2kak
=

√
π.

Zhi-Wei Sun in [8] proved the amazing identity

∞
∑

k=1

2kH
(2)
k−1

kak
=

π3

48

where H
(2)
n =

n
∑

k=1

1
k2 is the n-th harmonic number of the second order for every n ∈ N

and H
(2)
0 := 0 and at last, in [1] it is proved that

2n

n
∑

k=1

(−1)k−1

(

n

k

)

H2k =
4n

an
+ 1

for every n ∈ N, where Hn :=
n
∑

k=1

1
k , n ∈ N.
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